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RISK ASSESSMENT
- hazard identification
- exposure assessment
- hazard characterization
- risk characterization

RISK  MANAGEMENT
- risk evaluation
- option assessment
- option implementation
- monitoring and review

RISK COMMUNICATION
- interactive,multi-way 
exchange of information

Risk Analysis: 
The Org-Chart View of Risk Management
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What is a deterministic model?

⚫ In a deterministic model, the outcomes are 
precisely determined through known 
relationships among model parameters 

⚫ A given input will always produce the same 
output

⚫ There is no consideration of any random 
variation in the system

⚫ Model can be built using expected values, worst 
case estimates, etc.
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⚫ Bug “X” is present in Meat Pies 

⚫ Bug “X” can grow in Meat Pies 

⚫ Bug “X” can be inactivated by cooking

⚫ Meat Pies are consumed by college students 

⚫ college students occasionally store the Meat Pies 
improperly

⚫ college students sometimes do not cook Meat Pies 
well enough.
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QMRA Scenario: Building a deterministic model
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Example Scenario

⚫ First Approach
⚪ Estimate dose using mean values

⚫ Second Approach
⚪ Estimate dose using worst case
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Example Scenario

Mean Values

⚫ Bug “X” Concentration = 2.0 log CFU/g

⚫ Bug “X” Growth = 1.5 log (unitless multiplier)

⚫ Bug “X” Inactivation = 3.6 log (unitless mulitiplier)

⚫ Serving Size  = 53.33 g
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Example Scenario

Worst Case (upper limit)

⚫ Bug “X” Concentration = 4.0 log CFU/g

⚫ Bug “X” Growth = 1.85 (unitless multiplier)

⚫ Bug “X” Inactivation = 2.6 log (unitless multiplier)

⚫ Serving Size = 85.00 g
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Point Estimate Results

⚫ Mean Values
⚪ Estimated Dose Ingested

⚪ Approx. 36 organisms

⚫ Conservative Values
⚪ Estimated Dose Ingested

⚪ Approx. 152,000 organisms

Calculation
(10 [2 + 1.5 - 3.6] x 53.33)

Calculation

(10 [4 + 1.85 - 2.6] x 85.00)
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Discussion

⚫ If illness is very unlikely with doses below 1,000 
organisms, but increases above 1,000, are meat pies a 
“Safe Food”?

⚫ Why could you argue they are NOT safe?

⚫ Why could you argue they are safe?
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Interpreting Point Estimates

⚫ If conservative point estimate falls below maximum 
acceptable risk, then we know that the risk is truly 
acceptable 

⚪ … but the extent of overprotection is unknown

⚫ If conservative point estimate falls above maximum 
acceptable risk, then we do not know if the risk is truly 
unacceptable or is the result of propagated 
conservatism.

Burmaster 1995
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CASE STUDY: 
CRONOBACTER SAKAZAKII 

IN POWDERED INFANT FORMULA

Quantitative Risk Assessment
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⚫ Cronobacter sakazakii in powdered infant formula

⚫ Based on an actual risk assessment tool that is publicly available

⚫ Illustrates a real-world example of a deterministic model used in risk-based decision 
making

⚫ Incorporates features common to the application of microbiological risk assessment 
in many domains

• Dealing with predictive microbiology

Case study: Complex deterministic model
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C. Sakazakii in Powdered Infant Formula

⚫ Powdered Infant Formula (PIF) that meets existing international/Codex 
standards has been implicated in cases of illness with C. sakazakii 

⚫ Codex therefore began the process of revising the code
⚪ Recommended International Code of Hygienic Practice for Food for Infants and 

Children 

⚫ At the request of FAO/WHO this risk assessment tool was completed 
⚪ Provide risk-based scientific advice to Codex, and other risk managers, on the issue of 

C. sakazakii in PIF 

⚪ Intended for ‘live’ use by risk managers in consultation with scientific working groups 



Brief Summary of the Risk Assessment

⚫ Model estimates the dose of C. sakazakii in prepared PIF at consumption, and 
subsequently the risk

⚫ Specification of scenarios underpins the prediction of the dose in prepared 
formula at consumption

⚫ Outputs are in terms of the change in relative risk across scenarios
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Describing Preparation Scenarios 

⚫ Scenarios are defined in terms of  preparation, cooling/holding, re-warming 
and feeding

⚫ Scenarios consider:
� Temperature of re-hydration liquid

� Preparation scenario (single bottle, 1litre container..)

� Temperature for cooling/holding

� Room temperature for feeding 

� Duration of each preparation stage

⚫ Model predicts the temperature of the formula over entire time from 
re-hydration to feeding



A Closer Look at Preparation and Handling

Temperature of PIF

Preparation Scenario

Lag Phase Duration Growth Predictions Decline Predictions

Dose per serving
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Comparing Preparation & Handling Scenarios

⚫ FAO/WHO convened an expert meeting
� January 2006, Rome

⚫ Scenarios were created by a working group at the meeting

⚫ Questionnaires were sent to hospitals around the world

⚫ An extensive list of scenarios was explored 
� e.g. refrigerator temperature/time, room temperature…

⚫ Results were generated at the meeting and interpreted by the working groups
⚪ Full report available on JEMRA website

� http://www.who.int/foodsafety/publications/micro/mra10.pdf



Basic Scenarios

⚫ Eight basic scenarios were investigated 

⚫ Conditions were specified for cool, warm and very warm room temperatures 

⚫ Scenarios covered the combinations of:
� Cooling by refrigeration (4°C) or holding at room temperature

� Inclusion or exclusion of an explicit re-warming action

� Short or long feeding periods 

⚫ Each of these scenarios was run at a series of different reconstitution 
temperatures 

� 10, 20, 30, 40, 50, 60 and 70°C

� Resulting in the comparison of 168 different preparation scenarios



Example Output: Basic Scenarios



Example Output: Refrigeration



⚫ Following use of the risk assessment the meeting concluded that:
� Some of the current instructions on PIF product labels, and those recommended by health 

authorities, may lead to increased risk of C. sakazakii illnesses, and that these should be reviewed in 
light of the risk assessment results

⚫ The assessment has been used by FAO/WHO to develop guidance, and these 
are publicly available

� Guidelines for the safe preparation, storage and handling of powdered infant formula

� http://www.who.int/foodsafety/publications/micro/pif2007/en/ 

� Tool available freely online at www.fstools.org 

Providing Advice

http://www.fstools.org/


HAZARD AND RISK CHARACTERIZATION: 
MICROBIAL DOSE-RESPONSE MODELS AND 

ESTIMATING THE NUMBER OF ILLNESSES

Quantitative Microbial Risk Assessment
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⚫ The qualitative(?) and/or quantitative evaluation of the nature of the 
adverse health effects associated with the biological agent

⚫ Should explicitly consider the complexity of the interaction (including 
sequelae) between human and agent following exposure as well as the 
potential for further spread

⚪  Dose-response assessment should be performed 

Hazard Characterization in MRA

©Risk Sciences International 2017



©Risk Sciences International 2017

⚫Dose response models are mathematical functions that describe the dose 
response relationship for specific pathogens, transmission routes, and hosts

⚫ Estimate the risk of a response (for example, infection, illness or death) 
given a known dose of a pathogen

Dose-Response Assessment

•Exponential Beta-Poisson



Microbial Dose Response Models

⚫ Always considered to be acute exposure

⚫ 1 CFU is capable of causing infection
⚪ Theory of minimum infectious dose (MID) no longer accepted

⚫ May be based on feeding studies or outbreak data

©Risk Sciences International 2017



Completing the Meat Pie Model

⚫  

©Risk Sciences International 2017



Key Resource for Microbial Dose-Response Models

⚫ Large compendium of experiments and models compiled:
⚪ https://qmrawiki.org/framework/dose-response/experiments

⚫ See also, https://www.who.int/publications/i/item/9789240024892

32
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Risk Characterization: Getting to Number of Illnesses

⚫  

33



REVIEW OF PROBABILITY AND INTRODUCTION TO 
PROBABILISTIC MODELING
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Definition of Probability

⚫ Random experiment may reveal a pattern
⚪ Pattern of heads and tails

⚪ Pattern of different heights of people

⚫ Repeat experiment large number of times to learn more 
about pattern

⚫ Relative frequency of particular outcome compared to 
other outcomes tends toward constant value

Probability

35



Example

⚫ Probability is a measure between 0 and 1
⚫ A ball is selected at random from a bag containing 3 

red balls and 7 white balls
⚫ The probability that a red ball will be drawn is 3/10

36



⚫ At Random – means each of the 10 balls has same 
probability (chance) of being selected

⚪ All 10 outcomes are equally likely

⚫ The probability that a white ball is drawn is 7/10
⚪ Total of two probabilities is 1 – no other outcome is possible – 

ball is either white or red

37



Sample Space

⚫ Values that the outcome of random experiments can take
⚪ Heads or tails when tossing a coin

⚪ All possible heights of people in a room

⚫ Subset of values
⚪ Heights between 150 cm and 155 cm

38

Event



Random experiment

⚫ Process which yields information
⚪ result of tossing a coin
⚪ height of next person to enter room
⚪ time each slide will take to present

⚫ If random then unsure of outcome
⚪ Will you get a head or a tail?
⚪ Unsure of height before seeing (and measuring) person
⚪ Some slides will be faster than others

39



Conditional probability

⚫ A and B are outcomes of a random experiment

� P(A) - Probability A occurs

� P(not A) - Probability A does not occur

� P(A ∩ B) - Probability A and B occur

� P(A ∪ B) - Probability either A or B or both occur

� P(A | B) - Probability A occurs given B has occurred 

40



Representations of Probability

⚫ Help consider a problem visually

⚫ Often prevent simple mistakes

�  Venn Diagrams

�  Event Trees

41



Venn Diagrams

⚫ Venn diagrams show how the sample space is divided 
into events

⚫ Square is total sample space = 1

⚪ P(not A) = 1 - P(A)    

⚪ P(not B) = 1 - P(B)

SS

A B
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Venn diagrams

SS

A B

SS

A B

�  A and B mutually 
exclusive

�  A and B not mutually 
exclusive

� mutually exclusive events cannot occur at the 
same time

43



SS

A B

If A and B are not mutually exclusive

�  P(A ∩ B) = P(B|A) x P(A) 

�  P(A ∪ B) = P(A) + P(B)- P(A ∩ B) 

Calculations

44



Calculations

SS

A B

If A and B are mutually exclusive

�  P(A ∩ B) = P(B|A) x P(A) = 0  (why zero?)

�  P(A ∪ B) = P(A) + P(B)

45



Venn Diagram example

⚫ A chicken pie has 20% chance of having campylobacter, 
and 10% chance of having salmonella.  What is the 
probability that a chicken pie has either campylobacter or 
salmonella, or both?

⚫ P(campy) = 0.2

⚫ P(salm) = 0.1

⚫ P(campy & salm) = 0.2+0.1-(0.2*0.1)=0.28
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Example

P(campy) = 0.2

P(salm) = 0.1

P(campy ∪ salm) = 0.2+0.1-(0.2*0.1) =0.28

SS

P(campy) P(salm)
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Event Tree (two coin flips)

Head

Tail

Tail

Head

Tail

Head

TT

TH

HT

HH

❑ P(0 Heads) = (0.5 × 0.5) = 0.25

❑ P(1 Head)   = (0.5 × 0.5) + (0.5 × 0.5) = 0.5

❑ P(2 Heads) = (0.5 × 0.5) = 0.25

� p(x=0,1,2) = {0.25, 0.5, 0.25}
48



PROBABILITY DISTRIBUTIONS
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⚫ A function that describes all the values that a 
random variable can take, and the probability 
associated with each 

⚫ Random variable – must take one and only one 
value from sample space at any time

⚫ Values in sample space are mutually exclusive

⚫ Probabilities in distribution sum to 1

50

What is a Probability Distribution



⚫ Discrete

⚫ Continuous

⚫ Parametric

⚫ Non-parametric

51

Probability distributions can be …



Discrete distributions

⚫ A function that can take a discrete number of values 
(not necessarily finite). 

⚫ Each value (x) has exact probability of occurrence

⚫ Sum of probabilities equals unity

⚫ This is most often the non-negative integers 

⚫ Often referred to as a probability mass function

∑ =
j

jP 1
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Discrete example

⚫ Examples of discrete variables are
⚪ Outcome of tossing a coin (either H or T)
⚪ Gender (M or F)
⚪ Number of cars in a parking lot (integer)
⚪ A sample result that is either positive or negative
⚪ Number of organisms (0,1, 2, … )
⚪ Health status (immunocompromised, normal)
⚪ Day of the week that an event occurs
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Continuous distributions

⚫ Are defined for an infinite number of points 
over a continuous interval 

⚫ Area under curve equals unity

⚫ Probability for any particular value is zero

⚫ The probability that x is between two points a 
and b is 

  

⚫ Often referred to a probability density function 

[ ] ( )∫=≤≤
b

a
 dxxfbxap
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Continuous examples

⚫ Examples of continuous variables are
⚪ Time, Duration, and Intensity of Rainfall

⚪ Length, Weight, Height

⚪ Position of an accident (pipeline rupture)

⚪ Temperatures

⚪ Concentrations, Volumes, Rates

⚪ Distance an ambulance must travel to rescue

55



Borderline Cases

⚫ Some quantities inherently discrete, but 
characterized as continuous for computational 
convenience:

⚪ Large numbers of pathogens

⚪ The size of an exposed population

⚪ Number of phone calls handled by an emergency dispatcher in 
a week

⚫ Impact of this choice can range from trivial (often) to 
serious (rare, but important). Check it out!
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Borderline Cases

⚫ Some quantities are continuous, but may be 
characterized as discrete:

⚪ Reported measurements (rounded off)
� Temperature?

� Your height? Your age?

⚪ Building height (stories)

⚫ If required, we can use various methods to recreate a 
continuous distribution from discrete data

⚪ Take into account the expected nature of the continuous 
phenomenon, the form of discretization (e.g. rounding), expected 
biases

57



They can also be…..

⚫ Bounded
� confined by 2 limits

⚫ Unbounded 
� extends from ±infinity

⚫ Partially bounded
� constrained at one end

58



GRAPHICAL REPRESENTATIONS OF PROBABILITY
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Example: discrete random variable

60



Example: continuous random variable
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The cumulative distribution (cdf)

⚫ The cdf is the probability that the variable takes a value 
less than or equal to x :

 
    For a continuous distribution
  

⚫ For a discrete distribution

( ) [ ]xXxF ≤= Pr

( ) ( ) μμ dfxF ∫
x

∞−=

( ) ( )∑
=

=
x

i
ifxF
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PDFs and CDFs



Review of statistical measures

⚫ Measures of central tendency
⚪ Mean

⚪ Median

⚪ Mode

⚫ Measures of dispersion
⚪ Range

⚪ Variance, Standard Deviation

⚫ Percentiles
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Discrete Continuous

⚫ n = number of possible 
outcomes in SS

⚫ x
i
 = value of outcome i

⚫ p(x
i
) = probability of 

outcome i occurring

⚫ x = value of outcome 

⚫ f(x) = probability density 
function

Measures of central tendency: Mean or average (m)

65



Measures of Central Tendency

⚫ Mean 

⚫ Toss a coin twice, how many heads?

⚫ discrete distribution

⚫ sample space SS={0,1,2}

⚫ probability distribution p(x)={0.25,0.5,0.25}

⚫ Mean =  0×0.25 + 1×0.5 + 2×0.25  = 1 
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Measures of Central Tendency

⚫ Median
⚪ value that 50% of distribution is above and 50% of distribution is below

⚫ Mode
⚪ most frequent observation or value with highest probability of occurrence (most likely value)
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Measures of dispersion

⚫ Range
⚪ difference between minimum and maximum values

⚪ example: range of deer calf weight is 69.3-25.8 = 43.5kg

⚫ Variance
⚪ The average of squared deviations from the mean

68



Measures of dispersion

⚫ Percentiles
⚪ xth percentile is value for which x% of the data has a lower value

⚪ also thought of in terms of “certainty”
� 95% certain that number of sheep in a flock is less than 300

�  intervals of uncertainty

⚪ 50th percentile also called “median”

69



Measures of dispersion
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A SIMPLE PROBABILITY DISTRIBUTION:

UNIFORM

Quantitative Risk Assessment
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Uniform(a,c)

⚫ Parameters: minimum (a); maximum (c)

⚫ Assumes all values between a to c are equally 
likely to occur

⚫ Often used to represent total ignorance

⚫ continuous

⚫ Bounded 
⚪ Domain: (a≤x≤c)

⚫ Mean = (a+c)/2

  a                   c

72



Example of Uniform Distribution

⚫ The waiting time for treatment in the ER is not 
known, but can be between a minimum of 0.5 and a 
maximum 6 hours 

⚫ Distribution = Uniform(0.5,6)

⚫ Mean = 3.25

=RiskUniform(a,c)
Uniform(0.5, 6)

0.00
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0.12

0.14

0.16

0.18

0.20

0 1 2 3 4 5 6 7

73



INTRODUCTION TO MONTE CARLO SIMULATION

Quantitative Risk Assessment
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Monte Carlo simulation

⚫ Simulation - any analytical method meant to imitate 
a real-life system, especially when other analyses are 
too complex mathematically or are too difficult or 
expensive to reproduce. 

⚫ For each probabilistic variable define the possible 
values with a distribution.

⚫ Monte Carlo Analysis
⚪ systematically constructs the probability distribution of 

output variables, by randomly selecting values for input 
variables according to their probability distributions.

75



Monte Carlo Simulation

⚫ The random selection process is repeated many 
times 

⚪ multiple scenarios

⚫ Each value represents one possible scenario

⚫ Together, these scenarios give a range of possible 
solutions

⚫ Some solutions are more probable and some less 
probable – probability distribution

76



⚫ Monte Carlo analysis allows us to simulate variability 
and uncertainty in the values

⚫ Range of values for “D” and probability of occurring can 
be determined.

Normal (3,1)

A

Normal (6,2)

B

Normal (5,1)

C

 -  + 

D

 = 

Example : D= A+B-C

77
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Monte Carlo Simulation

⚫ When repeated many times the average solution 
will give an approximate answer to the problem

⚫ Accuracy of this answer can be improved by 
simulating more scenarios.

⚪ More on this later in the course 

78



Simulation Software: @Risk

⚫ Demonstrate:

⚫ How @Risk works with Excel

⚫ Building a simple simulation model using @Risk

⚫ Exploring probability distributions using @Risk

⚫ Understanding @Risk output

79



Dice: A Stochastic Process

⚫ Playing ‘Craps’: a simple example

⚫ Determining the probability distribution for the 
sum (S) of two dice, X and Y

⚫ Analytical Approach:

[ ] [ ] [ ]xsYxXsS
x

−==== ∑ P
r

P
r

P
r
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Dice: A Stochastic Process

⚫ Roll the dice and take notes

Iteration First Die Second Die Total
1 2 + 6 = 8
2 4 + 5 = 9
3 2 + 2 = 4
4 4 + 3 = 7
5 4 + 6 = 10
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Winning: 7, 11 or Doubles

1 32 54 6

1

3

2

5

4

6

7

7

7

7

7

7

11

D

D

D

D

D

D

11
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Proportion of Winning Hands

⚫ With Fair Dice: 38.88%

⚫ With One Loaded Die:
⚪ Lands 3, 25% of the time 38.3%

⚪ Lands 3, 35% of the time 37.7%

⚪ Lands 6, 25% of the time 40.0%

⚪ Lands 6, 35% of the time 41.3%

83



Analytical Solution
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Analytical vs. Simulation

⚫ Analytical solutions are 
exact, elegant, and 
defensible.

⚫ But, they require 
enormous effort in real 
world problems.

⚫ The required human 
resources are usually 
not available.

Analytical

Simulation

Problem Complexity

Ef
fo

rt
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Monte Carlo Simulation Software

⚫ Analytica™
⚪ Free version (for small to medium complexity models)

⚪ Professional Licence: https://analytica.com/products/free-edition/

⚫ R™ Statistical Software Package
⚪ Free and unlimited

⚪ Often used with R Studio (free and commercial versions)

⚫ @Risk™ (add-in to Microsoft Excel)
⚪ 15-day free trial: https://lumivero.com/resources/free-trial/atrisk/

⚪ Cost: USD $2125 per year

87
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A FEW MORE SIMPLE PROBABILITY DISTRIBUTIONS:

TRIANGULAR, PERT, BETA
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Distributions in Risk Assessment

⚫ Many distributions are used in risk assessment modeling for 
public health

⚫ We’ll look at 3 more distributions now to give a quick sample of 
risk modeling

⚫ Many statistics text books available on the subject

⚫ Good resources:
⚪ https://en.wikipedia.org/wiki/Probability_distribution

⚪ https://mathworld.wolfram.com/topics/ProbabilityandStatistics.html

89
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Triangular(a,b,c)

⚫ Parameters: minimum (a); mode (b); maximum (c)
⚫ Links the points
⚫ Continuous
⚫ Bounded 

⚪ Domain:(a≤x≤b)
⚫ Mean = (a+b+c)/3
⚫ Often used when data are                                sparse 

⚪ “rough modeling”
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Example of Triangular Distribution

⚫ A survey of patients shows that the most likely 
waiting time in the ER is 2.5 hours (with a minimum 
of 0.5 and a maximum of 6 hours)

⚫ Triangular(0.5,2.5,6)

⚫ Mean= (a+b+c)/3 
3 hours

=RiskTriang(a,b,c)

7

Triang(0.5, 2.5, 6)
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Pert(a,b,c)

⚫ Parameters: minimum (a); mode (b); maximum (c)
⚫ Links points in a “bell”-like shape
⚫ Continuous
⚫ Bounded 

⚪ Domain: (a≤x≤b)

⚫ Mean = (a+4*b+c)/6
⚫ Also used when data are sparse – 

⚪ “rough modeling”
⚪ Similar, but smoother than triangular distribution.
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Example of Pert Distribution

⚫ The mean concentration of salmonella in a 
contaminated raw egg is unknown.  It is thought to 
have a minimum of 20cfu, a maximum of 1000 cfu 
and a most likely level of 900cfu.  What is the level 
per egg?

⚫ Pert (20,900,1000)
⚫ Mean = (a+4*b+c)/6

   = (20+4*900+1000)/6
   = 770 cfu per egg

=RiskPert(a,b,c)

Pert(20, 900, 1000)

0.00 200 400 600 800 1000 1200
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Beta(α, β)

⚫ Describes probability of success (p) given s 
successes occurred in n trials

⚫ Continuous

⚫ Bounded
⚪ Domain: 0<x<1

⚫ Mean = α/(α+β)
⚫ Can be used to represent uncertainty in prevalence 

given test results with s positives and n-s negatives with 
no prior knowledge (α=s+1, β=n-s+1)
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Example: Beta distribution

⚫ Survey data show 1 positive and 4 negative blood tests 
(so ... s=1, n=5).

⚫ Beta(1,1) represents the “ignorance distribution”
⚫ We add the survey results 

to the ignorance distribution

⚫ Prev = Beta(s+1, n-s+1)
  Beta(1+1,5-1+1)  

      Beta(2,5)

=RiskBeta(s+1,n-s+1)

Beta(2, 5)

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0
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Recap: 4 Distributions

Uniform(min,max)

  

Triangular(min,ml,max)Pert(min,ml,max)

Beta(s+1,n-s+1)
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COMPARING A DETERMINISTIC AND 
PROBABILISTIC APPROACH
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⚫ Remember the Meat Pies scenario
⚪ Deterministic model

⚫ What if we included variation into the system?

⚫ Question: Where might we want to include variation in 
the model?

98
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Growth
(Transport/Storage)

Revisiting our Scenario

Dose

Concentration

Reduction
(Cooking)

Amount 
Consumed
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Example Scenario

Mean Values

⚫ Bug “X” Concentration = 2.0 log CFU/g

⚫ Bug “X” Growth = 1.5 log (unitless multiplier)

⚫ Bug “X” Inactivation = 3.6 log (unitless mulitiplier)

⚫ Serving Size  = 53.33 g
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Example Scenario

Worst Case (upper limit)

⚫ Bug “X” Concentration = 4.0 log CFU/g

⚫ Bug “X” Growth = 1.85 (unitless multiplier)

⚫ Bug “X” Inactivation = 2.6 log (unitless multiplier)

⚫ Serving Size = 85.00 g
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Including Variability through Probability Distributions

Replacing Point Estimates with Distributions

⚫ Bug “X” Concentration = Uniform (2.0, 4.0) log CFU/g

⚫ Bug “X” Growth = Triangular (1, 1.5, 2) log change

⚫ Bug “X” Inactivation = Triangular (2.5, 3, 5) log change

⚫ Serving Size = Triangular (10, 50, 100) grams
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Recall that for point estimates…

⚫ If conservative point estimate falls below maximum 
acceptable risk, then we know that the risk is truly 
acceptable (Amount of overprotection is unknown)

⚫ If conservative point estimate falls above maximum 
acceptable risk, then we do not know if the risk is truly 
unacceptable or result of propagated conservatism.

Burmaster 1995
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Probabilistic vs. Point Estimate

⚫ Using the mean value:
⚪ quite likely to occur - realistic

⚪ doses higher than this frequently occur - not conservative

⚫ Using the conservative estimates
⚪ not very likely to occur - not realistic

⚪ doses higher than this rarely occur – “conservative”

⚪ Still, may not be conservative enough
� Should 95% confidence be a surrogate for ‘safe’
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Probabilistic vs. Point Estimate

⚫ Point Estimates
⚪ Probability of an event occurring is not considered

⚪ Represents a significant loss of information.

⚪ Risk Management decisions made with very little information. 

⚪ Assessments can be overly conservative, or inadequately protective, 
depending on the application.
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Probabilistic vs. Point Estimate

⚫ Selection of conservative estimate is a contentious issue:
⚪ How conservative should it be?

� Worst Case Scenarios (creativity may the only limit to this)

� Default regulatory guidelines

⚪ Propagating conservative estimates through assessment results in estimates of risk with no 
probability context
� Reduces credibility of assessment

� Risk Management decisions not “based on science“
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Introduction to Model Analysis

⚫ Review of Outputs from @Risk
⚪ Simulation files

⚪ Graphical Output and Reports

⚫ Sensitivity Analysis (Excel and @Risk)

⚫ Importance Analysis (@Risk)

⚫ Running Multiple Scenarios
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 UNDERSTANDING MONTE CARLO SIMULATION

Quantitative Risk Assessment: Focus on 
Simulation 

and Exposure Assessment
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Recall…

⚫ Simulation - any analytical method meant to imitate a 
real-life system, especially when other analyses are too 
complex mathematically or too difficult to reproduce. 

⚫ For each probabilistic variable define the possible 
values with a distribution.

⚫ Monte Carlo Analysis
⚪ systematically constructs the probability distribution of output 

variables, by randomly selecting values for input variables 
according to their probability distributions.
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And that…

⚫ The random selection process is repeated many 
times 

⚪ multiple random scenarios, often referred to as “iterations”

⚫ Some output values (combinations of inputs) are 
generated more often than others – this frequency 
distribution approaches the true probability 
distribution as the number of iterations increases (if 
we could actually know it analytically).
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Generating distributions

⚫ Based upon pseudo-random numbers

⚫ Example method:

⚫ Analytic inversion

⚫ If u is uniformly distributed over (0,1), and Y has 
cumulative dist FY , then              has cdf FY

⚫ Method

⚫ Generate u, determine x=F-1(u), return x

( )uFY
1−
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Example

⚫ Generate an exponential distribution

⚫ Cdf is F(x)=1-exp(-λx)

⚫ Let u= 1-exp(-λx)

⚫ Therefore x=-(1/ λ)ln(u)

⚫ Algorithm:
⚪ Generate u

⚪ Return x=-(1/ λ)ln(u)
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Sampling methods: Monte Carlo

Simple Random Sampling  (or, “Simple Monte Carlo”)

⚫ The most straightforward sampling method

⚫ Samples U(0,1) with replacement

⚫ Requires a relatively large sample size to generate 
accurate output statistics when complex models are 
simulated

113



Sampling Methods: Latin Hypercube

Latin Hypercube sampling

⚫ Less common method (but more common in risk 
analysis due to availability in off-the-shelf software)

⚫ Area under the distribution curve is segregated 
according to the sample size specified (referred to as 
iterations)

⚫ Randomly samples once within each ‘area’
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Convergence

⚫ As the number of iterations increases, the statistics 
(mean, variance) of the simulated output distribution will 
converge toward the correct analytical solution.

⚫ Accuracy of this answer can be improved by simulating 
more scenarios. 
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Optimal Settings

⚫ There are no universally applicable procedures for 
determining the optimal simulation settings

⚫ There are some general guidelines that a model 
developer may adopt to help ensure the number of 
iterations in the model simulation is of the appropriate 
magnitude
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What is optimal?

⚫ As the number of iterations increases the 
representation of the input and output 
distributions is improved

⚫  When models include skewed distributions, highly 
non-linear equations or rare events the number of 
iterations required to achieve a good 
representation of the output distribution will be 
higher than models without these properties

⚫ Aim is to determine point where “extra effort to 
achieve accuracy exceeds reward”

118



First Option

⚫ Defining a “true mean” at a very large number of iterations, that is a number 
which is sufficiently beyond an expected convergence point of the model, and 
looking at the variation of the running mean from this “true mean” and 
accepting it if it is within some range 

⚪ For example ±1%
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Second Option

⚫ Observing the change in the statistic over increasing iterations and accepting 
the results when the statistic no longer varies more than some acceptable 
level (for example ±1%). 

⚪ No defined “true mean” rather the assumption is made that at the point where the stability is 
obtained represents the “true mean”.

⚪ Caution needed as a model can appear to stabilise but in subsequent iterations diverge 
wildly.
� Non-linear (exponential, threshold) models and rare events.

⚪ Using the “true mean” as a criteria avoids this issue.
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Steps to Perform

⚫ Identify the output that represents a stable (or converged) model 

⚫ Identify the statistic(s) to monitor

⚫ Define the criteria for stable (converged) estimates

⚫ Run the model several times with different sample sizes (numbers of 
iterations)
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Steps to Perform (continued)

⚫ Examine the results and determine the point where the model convergence is 
acceptable

⚫ The convergence of the model should be re-examined whenever there is a 
change to the model in either the distributions used to describe the variables 
in the model, or changes in the model equations themselves.

⚫ Test is if multiple runs give approximately same results 
⚪ Different number seeds

⚪ Allowing for randomness!
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INSIGHT INTO COMMONLY-USED 
PROBABILITY DISTRIBUTIONS

Quantitative Risk Assessment: Focus on 
Simulation 

and Exposure Assessment
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Process-derived distributions

⚫ Shape of the distribution comes from the mathematics 
describing a theoretical phenomenon

⚪ Also referred to as ‘mechanistic’

⚫ Requires an understanding of the underlying random 
process, and any randomness that is part of observing it.

⚫ Theoretical basis for a particular distribution may be used 
to ‘overrule’ goodness of fit statistics that would suggest 
other distributions appear to be preferable.
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‘Empirical’ distributions

⚫ Used for unknown underlying process, mixed data, 
or when the phenomenon is too complex to assign 
to a theoretical class

⚫ Used to capture subjective judgments (e.g. prior 
beliefs, expert beliefs)

⚫ Also, applies to distributions based directly on data, 
regardless of process

125



Process-derived Empirical

⚫ Binomial,Negative Binomial

⚫ Exponential

⚫ Gamma *

⚫ Geometric,Hypergeometric

⚫ Gumbel

⚫ Normal, Lognormal

⚫ Poisson

⚫ Weibull

⚫ Beta *, Beta-Pert **

⚫ Uniform *

⚫ Triangular 

⚫ Empirical PDF, CDF based 
directly on data

* Commonly play formal roles in Bayesian 
Updating

** Often used for expert judgment, or   
first guesses

Process-derived vs. Empirical
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Another way of classifying distributions

⚫ Unbounded 
⚪ extends from negative to positive infinity

⚫ Partially bounded
⚪ constrained at one extreme (often zero)

⚫ Two-sided bounded
⚪ confined within lower and upper bounds

⚫ Fixed domain
⚪ Can take on a fixed number of values
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THE NORMAL AND LOGNORMAL DISTRIBUTIONS 
AND THE CENTRAL LIMIT THEOREM
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The Normal distribution

⚫ Bell-shaped symmetrical curve

⚫ Normal(μ,σ)

⚫ μ is mean and σ is standard deviation

⚫ Continuous

⚫ Unbounded
⚪ Domain: -inf<x<inf

⚪ (Kurtosis = 3)
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The Log-Normal (Lognormal) distribution

⚫ Related to the normal distribution:
⚪ When the log-normally distributed data are log-transformed, they 

follow a normal distribution

⚫ Various parameterizations are used (be careful here):
⚪ LogNormal(logμ, logσ) 

⚪ LogNormal(median, gsd)

⚫ Continuous

⚫ Bounded from below
⚪ Domain: 0<x<inf
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Central Limit Theorem

⚫ Simply put, the distribution of the sum of a sufficiently 
large number of independent random variables will 
converge toward the normal distribution as the number 
of variables increases.
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Product of RVs 🡪 Lognormal

⚫ What about the product of a sufficiently large number 
of random variables?

  Remembering that: 

If  ProdX = X1 * X2 * X3* … Xn, then

Log(ProdX) = Log(X1) + Log(X2) + Log(X3) + … Log(Xn)

⚫ Since a product can always be re-written as a sum of 
log-transformed random variables, the CLT predicts that 
the log of this product will be normally distributed. 

⚪ Therefore the product must be log-normally distributed.  
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Central Limit Theorem Example

⚫ Take the sum of n random variables, each distributed as a 
uniform distribution between 0 and 1: Uniform(0,1)

⚫ Let’s look at the distribution of the mean with    
increasing n
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Sum of 50 U(0,1)

Kurtosis ≈ 3
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Three key discrete random processes used in risk 
assessment are:

1. Binomial (with Beta)

2. Poisson (with Exponential and Gamma)

3. Hypergeometric (less common)

Parametric distributions
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Binomial (Bernoulli) Process

⚫ Given a number of independent trials (n) 

⚫ Two possible outcomes of each trial - success or failure 

⚫ A Binomial random variable counts the number of 
successes (s) among the n trials.

⚫ Probability of success = p

⚫ Probability of failure =1-p

Binomial Process!

138



Examples of Binomial Process

⚫ The obvious one….flipping a coin!
⚪ Toss coin n times will get a head s times

(considering a head as a success!)

⚪ There is a probability p of getting a head

⚪ There is a probability 1-p of getting a tail

⚫ Picking people from a crowd - will either be male or 
female

⚫ Number of animals with “Disease X” selected from a herd 
- either diseased or not
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Binomial(n,p)

⚫ Describes number of successes (s) given n trials, 
each with probability of p for success

⚫ Discrete

⚫ Bounded 
⚪ Domain: (0≤x≤n)

⚫ Mean = np

⚫ Bernoulli is a special case of Binomial with n=1
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Binomial - example

⚫ TV switches have 0.2 probability of being faulty.  How 
many are faulty in a random batch of 100?

� Binomial(100,0.2)

� Mean=20

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0 5 10 15 20 25 30 35

Binomial(100, 0.2)
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Binomial calculations

⚫ The probability that a person is allergic to cats is 0.3.  
What is the probability of at least one in a group of 50 
people, selected at random, being allergic?

⚫ Probability that a person is not allergic
⚪ (1-p) = (1-0.3)  or 0.7

⚫ Probability all persons in group not allergic
⚪ (1-p)n = (1-0.3)50  or 0.750

⚫ Probability at least one person in group is allergic
⚪ 1- (1-p)n =1- (1-0.3)50 = 0.999999982
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Beta(α, β)

⚫ Revisiting the Beta distribution

⚫ We talked about Beta(s+1,n-s+1)

⚫ But it really should be thought of as:

⚫ Beta(α, β)
⚪ α =s+a

⚪  β =n-s+b

⚪ a and b depend on prior, where prior is Beta(a,b).  

Often the prior knowledge is ‘ignorance’ which is reflected by Beta(1,1) 
which yields α=s+1 β=n-s+1 after observing n trials.
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Updating Beta with New Information

⚫ Start with Beta(1,1) prior i.e. ignorance

⚫ Survey data show 1 positive and 4 negative blood tests, 
add them to the ignorance distribution to get 

⚫ Prev =  Beta(s+a, n-s+b)  

     Beta(2,5) Beta(2, 5)

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0
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Beta: More Data Leads to 
Tighter Distributions

⚫ If another test was done on 500 farms, and 100 
were positive. 

⚪ Remember Beta(s+a, n-s+b)

⚫ From previous test a=2, b=5

⚫ Therefore an appropriate uncertainty 
distribution would be Beta(102,405).

⚪ Mean is still ~20%, but distribution is narrowly 
distributed, reflecting increased confidence.
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‘Bayesian Updating’

large survey

Beta(2,5) Beta(102,405)Beta(1,1)

small sample“ignorance”

0.0 0.3 0.5 0.8 1.00.0 0.3 0.5 0.8 1.0 0.0 0.3 0.5 0.8 1.0
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Negative Binomial(s,p)

⚫ Describes the number of failures in a discrete process 
with success probability p, until s successes, each process 
stops at last success

⚫ Discrete

⚫ Bounded at 0
⚪ Domain: {0,1,2,3,…}

⚫ Can also be used to reflect ‘over-dispersion’ in a Poisson 
process (discussed later).
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Negative Binomial - Example

⚫ Patients tested using assay with sensitivity of 95%, 
testing stopped at 6th positive result

⚫ How many positives are we likely to have 
misdiagnosed? NegBin(6,0.95)

⚪ Mean = 0.315

⚪ P(missed at least one) = 36.5%
NegBin(6, 0.95)
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Poisson process

⚫ A Poisson process is one in which events happen 
randomly within some window of opportunity.

⚫ The Poisson distribution counts the number of 
observations of the process in a certain window.

⚫ Occurs over a continuum of opportunity

⚫ Observations of the process described by λ
⚪ Observation process depends on both the intensity of the 

process and the extent of observation (time, distance, etc.)
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The Poisson Parameter (λ)

⚫ A Poisson process has a single parameter, λ 

    where λ = μ w

⚫ μ is the average intensity of the process
⚪ This may be over time or space or other unit of measurement

⚪ E.g. # events per unit time, or # events per unit space

⚫ “w” is the size of the window of observation
⚪ Units of time, area, volume etc.
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Poisson Process

⚫ 3 main distributions

1. Poisson (λ)

2. Gamma (α,β)

3. Exponential (β)
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Poisson(λ)

⚫ Describes the number of events (α) that occur 

   given μw (i.e. λ)

⚫ Discrete

⚫ Bounded at 0 
⚪  Domain: {0,1,2,…}

⚫ Mean = λ

Poisson(10)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 5 10 15 20 25

152



Poisson - Example

⚫ Accidents occur at an average of 1 per 100 kilometers per 
year (µ=0.01 per kilometer-year).

⚫ If we observe a 1000 km stretch for one year (w = 1000*1), 
we can model the distribution of the number of accidents 
per year observed as:

RiskPoisson(0.01*1000) or
RiskPoisson(10)

153



Poisson – Example (2) 

⚫ A pathogen is randomly distributed throughout 
a homogeneous food product. Concentration is 
thought to be 1 CFU per 100 g (μ=0.01 CFU/g). 
A consumer eats 35 g of the product (w=35)

⚫ The ingested dose can be modeled                   
as:

RiskPoisson(0.01x35) or
RiskPoisson(0.35)

Poisson(0.35)

0.1
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0.3

0.4

0.5

0.6
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0.8
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Poisson Calculations

⚫ Probability of any particular count:

        P(x) = λxe-λ / x!
                       x! = x(x-1)(x-2)…(2)(1)

⚫  Important results:
⚪ Probability of zero observations:       

             P(x=0) = e-λ

⚪ Probability of at least one: 

             P(x>0) = 1 - e-λ 
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Example

⚫ In country Y the mean annual number of cases of Creutzfeldt-Jakob Disease is 
7. 

⚫ What is the probability there will be 0 cases next year?
⚪ P(x=0) = e-λ =e-7 =0.000912

⚫ What is the probability there will be at least one?
⚪ P(x>0) = 1 - e-λ =1-0.000912 = 0.999088
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Approximations

⚫ In some circumstances it is convenient to use 
approximations to distributions

⚪ If a situation requires calculation of large numbers, or factorials of 
large numbers
� Binomial or Poisson distribution

⚫ Approximations can be applied given certain conditions 
are met
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Binomial Distribution

⚫ Pmf is given by 

⚫ Involves calculation of factorials

⚫ What if I toss a coin 1 million times…requires calculation 
of factorials up to 1 million!

⚫ Can be approximated by the Normal distribution

⚫ Binomial(n,p) ≈ Normal(np,(npq)0.5)
⚪ q=(1-p)

⚪ One possible criterion for use  n0.31p>0.47
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Normal Approximation to Binomial, p=0.1

n=10
n=100

n=1,000

160
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Uncertainty

⚫ Uncertainty is used to describe the fact that we have 
incomplete knowledge.

⚫ Uncertainty can be treated:
⚪ formally (e.g. sampling error)

⚪ quasi-formally (e.g. formal expert elicitation)

⚪ informally (e.g. judgement)
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Variability

⚫ Variability refers to the fact that natural phenomena have 
inherent dispersion.

⚫ This type of dispersion is not reducible through sampling 
or research

⚫ Reduction of dispersion is not an improvement in 
knowledge…  
it would reflect a loss of information.
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⚫ Imagine you measure the height of 10% of a 
university class

⚫ Data represent variability

⚫ But not a complete sample, so also have 
uncertainty

⚫ More you sample – less uncertainty still

⚫ Sample 100% and you have perfect knowledge of 
the distribution of variability

⚫ But what if you can’t increase the sampling?.....

Uncertainty and Variability
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Uncertainty Variability

⚪ Effectiveness of boiling 
eggs for 7 min.

⚪ Probability of any 
single farm being 
positive

⚪ Proportion of 
consumers who eat 
product raw

⚪ Duration of boiling of 
eggs by consumers

⚪ Variation in size of 
herds

⚪ Size of portion 
consumed

Examples of Uncertainty & Variability
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⚫ Construct the following statement regarding a 
distributed parameter, P:

⚪ “With perfect information, P could be reduced to a single 
value.”

⚫ If it sounds plausible … Uncertainty

⚫ If it sounds inappropriate … Variability

⚫ Most phenomena are modelled 
with both U & V

⚪ Often our most important uncertainty is the extent of 
variability

One (imperfect) way to differentiate
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Two-stage (or 2-D) Monte Carlo

⚫ It is often advocated to separate uncertainty and variability.
⚪ Conceptually, it makes sense to differentiate measures of ignorance and 

measures of real variability.
⚪ Practically, it is very difficult to do completely.

⚫ Two stages of simulation
⚪ Simulate values for uncertain random variables
⚪ Use uncertain random variables to drive a series of simulations which 

explore only variability.
⚪ Analyze the variability and uncertainty separately.

⚫ FDA-iRISK fully supports 2-D Monte Carlo simulation
⚫ R™ package mc2d also supports 2-D Monte Carlo simulation
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